Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 1590


Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Advertise Contacts Login 

  Table of Contents  
Year : 2014  |  Volume : 55  |  Issue : 5  |  Page : 428-431  

Defective lipid metabolism in sickle cell anaemia subjects in vaso-occlusive crisis

1 Department of Chemical Pathology, University of Ibadan/University College Hospital, Ibadan, Nigeria
2 Department of Haematology, University of Ibadan/University College Hospital, Ibadan, Nigeria

Date of Web Publication9-Sep-2014

Correspondence Address:
Kehinde Sola Akinlade
Metabolic Research Unit, Department of Chemical Pathology, University of Ibadan/ University College Hospital, Ibadan, 200212
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0300-1652.140388

Rights and Permissions

Background: Abnormal lipid homeostasis has been reported in sickle cell anaemia (SCA) as well as in other haematological disorders. However, there is little information on the lipid profile of SCA subjects in vaso-occlusive crisis (VOC). This study determined the lipid profile of adult SCA subjects in VOC and in steady state (SSCA). Materials and Methods: Fifty-eight (58) adults with HbSS (30 in steady state and 28 in vaso-occlusive crisis) and 24 age-matched healthy individuals with HbAA genotype were recruited into this study. Standard methods were used for the determination of blood pressure (BP), packed cell volume (PCV), total white blood cell count (WBC) and haemoglobin phenotype. After an overnight fast, 5 ml of venous blood was obtained from each SSCA and the controls while samples were collected upon admission in the VOC group. Plasma lipid profile was determined using enzymatic method. Differences between two groups were determined using independent Student's t-test or Man-Whitney U as appropriate. P-values less than 0.05 were considered significant. Results: Plasma total cholesterol (TC) and high density lipoprotein (HDL) were significantly lower while the ratio of triglyceride (TG) to HDL (TG/HDL) was significantly higher in SSCA compared with the controls. Low density lipoprotein (LDL) and TC were significantly lower in SCA subjects in VOC compared with controls. However, TC, TG, LDL and TG/HDL were significantly lower while HDL was significantly higher in VOC compared with SSCA. Conclusion: Sickle cell anaemia subjects have defective fasting lipid metabolism which becomes pronounced with VOC.

Keywords: Lipid profile, sickle cell anemia, steady state, vaso-occlusive crisis

How to cite this article:
Akinlade KS, Adewale CO, Rahamon SK, Fasola FA, Olaniyi JA, Atere AD. Defective lipid metabolism in sickle cell anaemia subjects in vaso-occlusive crisis. Niger Med J 2014;55:428-31

How to cite this URL:
Akinlade KS, Adewale CO, Rahamon SK, Fasola FA, Olaniyi JA, Atere AD. Defective lipid metabolism in sickle cell anaemia subjects in vaso-occlusive crisis. Niger Med J [serial online] 2014 [cited 2023 Dec 6];55:428-31. Available from: https://www.nigeriamedj.com/text.asp?2014/55/5/428/140388

   Introduction Top

Sickle cell anaemia (SCA) is a monogenic disorder resulting from substitution of glutamic acid with valine in position 6 of the β-chains of haemoglobin (Hb). It is characterised by the production of abnormal Hb referred to as sickle Hb or HbS. [1],[2],[3] The prevalence of SCA is high in sub-Saharan Africa with Nigeria having the highest burden. [4],[5]

SCA has been associated with hyperhaemolysis, cerebrovascular disease, acute chest syndrome, vaso-occlusive crisis, pulmonary hypertension and premature death among others. [6],[7] Relatively, individuals with SCA enjoy a compensated state of ill health interspersed with periods of acute exacerbation characterised by hyperhaemolytic (anaemic) or vaso-occlusive (VOC; painful crisis) with infection, tissue hypoxia and micro-vascular occlusion as important predisposing events. [6],[8]

Abnormal lipid homeostasis has been reported in SCA as well as other haematological disorders such as β-thalassemia and this has been suggested to have the potential to alter membrane fluidity and function of red blood cell (RBC) in individuals with SCA. [9],[10],[11] Earlier studies reported significant increase in plasma triglyceride (TG) levels and concurrent significant decrease in plasma levels of total cholesterol (TC), high-density lipoprotein-cholesterol (HDL) and low-density lipoprotein-cholesterol (LDL) in SCA subjects. [9],[11],[12] Several inconclusive mechanisms such as heightened erythropoiesis (causing increased cholesterol utilization), defective liver function (due to iron overload) and defects in postabsorptive plasma homeostasis of fatty acids have been put forward to explain the pathogenesis of this SCA-associated lipid abnormalities. [9],[13] However, it is worthy of note that this lipid phenotype is generally recognized as a risk factor for cardiovascular diseases. Zorca et al. [11] reported that elevated plasma TG is a potential risk factor for pulmonary hypertension (PH) in SCA subjects.

The impact of disordered lipid metabolism on the course of SCA and its numerous complications are not yet clearly defined. Also, there is little information on the lipid profile of SCA subjects in VOC. Due to the present dearth of knowledge; this study determined the lipid profile of adult Nigerians with SCA in vaso-occlusive crisis (VOC) and in steady state (SSCA).

   Materials and methods Top

Eighty-two participants comprising 58 adults with SCA (30 in steady state and 28 in VOC) and 24 age-matched healthy individuals with HbAA genotype were recruited into this study. The SCA (HbSS) subjects were recruited from the Hematology Day Care Unit, Department of Hematology, University College hospital, Ibadan after approval by University College Hospital (UI/UCH) Joint Ethics Review Committee, and informed consent by participant.

Steady state (SSCA) and vaso-ooclusive crisis (VOC) were defined as earlier reported. [14] Subjects with other forms of genotype apart from HbSS and HbAA, diabetes mellitus, hypertension, human immunodeficiency virus (HIV), hepatitis, cancer and with established endocrine dysfunctions were excluded from the study.

Blood pressure (BP) was obtained using a Mercury Sphygmomanometer after at least 10 minutes of rest.

After an overnight fast of about 10 hr, 5 ml of venous blood was obtained from each SCA subject in steady state (SSCA) and the controls. Samples were collected upon admission in the VOC group as VOC is an acute clinical condition hence; could not have been predicted for possible overnight fast. Most subjects in VOC would probably be anorexic because of the acute pain they were going through. Blood samples were dispensed into EDTA-containing samples bottles and after determining the packed cell volume (PCV) and total white blood cell count (WBC), plasma was appropriately obtained and stored at −20°C until analyses were done.

Haemoglobin phenotype of each subject was determined using standard electrophoretic method at pH 6.8 while PCV and WBC were determined as described by Cheesbrough. [15] Plasma lipid profile was determined using enzymatic method while LDL was calculated using Friedwald equation. [16]

Statistical analysis

The distribution of the data was assessed using histogram with normal curve. Results are presented as mean ± standard deviation or as median (interquartile range) for Gaussian and non-Gaussian distributed data, respectively. Analysis of Variance (ANOVA) or Kruskal-Wallis test was used to compare all the three groups while differences between two groups were determined using independent Student's t-test or Man-Whitney U as appropriate. P-values less than 0.05 were considered significant.

   Results Top

[Table 1] shows the characteristics of all the subjects. PCV, TC, HDL and LDL were significantly lower while WBC was significantly higher in SCA compared with the control subjects. There was slight, but insignificant elevation of TG in SCA compared with the control subjects.

In [Table 2], all the components of the lipid profile between the three groups (SSCA, VOC and controls) were significantly different. There was progressive decrease in TC and LDL from controls through VOC. Other components of the lipid profile had no specific pattern of differences.
Table 1: Characteristics of the subjects

Click here to view

In [Table 3], TC and HDL were significantly lower while TG/HDL was significantly higher in SCA subjects in steady state (SSCA) compared with the control subjects. Similarly, TC and LDL were significantly lower in SCA subjects in vaso-occlusive crisis (VOC) compared with controls. However, TC, TG, LDL and TG/HDL were significantly lower while HDL was significantly higher in VOC compared with SSCA.
Table 2: Comparison of lipid profile in SSCA, VOC and control subjects using ANOVA

Click here to view

To find out if there is any interaction between WBC and lipid profile, SCA subjects were classified into two groups based on the mean WBC value; 11.97 (103/μL) [Table 1] into ≤11.97 (103/μL) and >11.97 (103/μL) groups. As shown in [Table 4], the two groups had similar lipid profile but they exhibited a similar pattern to that observed when SSCA were compared with VOC. There was insignificant reduction in the levels of TC, TG, LDL, TG/HDL and insignificant elevation of HDL level in SCA subjects with >11.97 (103/μL) WBC compared with SCA subjects with ≤11.97 (103/μL)
Table 3: Lipid profile in SSCA, VOC and control subjects

Click here to view
Table 4: Pattern of lipid profile based on mean total white blood cell count (WBC) in SCA subjects

Click here to view

   Discussion Top

Despite intense research for over 4 decades, mechanism of lipid homeostasis alteration in SCA subjects is not yet fully understood. [11] The observed lower levels of TC, HDL and LDL in the combined SCA subjects (SSCA and VOC) are not novel findings. Hypocholesterolemia has been widely reported in SCA subjects [11],[12] and was thought to be due to increased cholesterol utilization consequent to increased erythropoiesis of SCA. However, the reports of Westerman [17] and Ngogang et al., [18] showed that hypocholesterolaemia is a common feature of both haemolytic and non-haemolytic anaemia and that serum cholesterol is in equilibrium with the cholesterol content of total red cell mass. It was, therefore, suggested that SCA-associated hypocholesterolemia is a consequence of anaemia itself and not increased erythropoiesis. [11],[17]

The interaction between SCA complications such as VOC and disturbed metabolic homeostasis in individuals with SCA has been reported. [14],[19] In this study, TC and LDL decreased progressively from control-to-SSCA-to-VOC. SSCA had lower TC and HDL while VOC had lower TC and LDL compared with the control subjects. This observation further confirms that SCA-associated hypocholesterolemia might be anaemia dependent as intense haemolysis has been associated with various complications of SCA. [20] Also, TG/HDL was higher in SSCA than the control groups. The ratio of TG to HDL has been reported to be relevant in determining the risk of clinical vascular disease. It has been used to identify diabetic patients with an atherogenic lipid profile and has been found suitable in selecting patients needing earlier and aggressive treatment of lipid abnormalities. [21] Our observation is not surprising as the SSCA group had slightly higher TG with concurrent lower HDL compared with the control subjects. Zorca et al. [11] reported that high TG/HDL is associated with endothelial dysfunction and suggested that high TG/HDL is a potential risk factor for pulmonary hypertension. Although LDL is usually low in SCA subjects, Belcher et al. [22] showed that LDL from SCA subjects is more susceptible to oxidation and cytotoxicity to endothelium. Our observation, together with earlier reports, indicates that anaemia-associated lipid homeostasis disturbance could predispose SCA subjects to various vascular diseases.

Unfavorable plasma fatty acid composition has been associated with clinical severity of SCA. [23] Similarly, Nouraie et al. [20] reported that intensity of haemolytic anaemia is an independent risk factor for the development of SCA complications such as PH and hypoxaemia. In this study, plasma levels of TC, LDL and TG/HDL were lower in VOC compared with SSCA. This observation could be as a result of possible intense haemolytic anaemia in VOC which would facilitate the attainment of a new equilibrium between the serum cholesterol and cholesterol content of total red cell mass. [11],[17]

The observed higher HDL in VOC compared with SSCA supports the report of Darbari et al. [3] which showed that higher HDL is independently associated with frequent VOC. The observed elevated plasma HDL could be a marker of less marrow activity in SCA subjects since formation of erythroid cell membrane requires cholesterol. [11],[24] The reason for the observed lower TG in VOC compared with SSCA is presently unclear. However, intake of drugs and/or reduced food intake (due to possible anorexia) before presentation may be responsible for this observation. Further research work is still required to properly understand the disturbance in lipid homeostasis following VOC as standard fasting period could not be ensured in our VOC subjects. Also, the small sample size used in this study could limit proper data interpretation.

   Conclusions Top

Our study further confirms the widely reported defective lipid homeostasis in adults with sickle cell anaemia. It also showed that the alteration in the lipid metabolism becomes pronounced with vaso-occlusive crisis.

   Acknowledgement Top

This research work was self-funded. The authors appreciate the cooperation of all the study participants and the support of the entire Resident Doctors of the Departments of Chemical Pathology and Hematology, University College Hospital, Ibadan.

   References Top

1.Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997;337:762-9.  Back to cited text no. 1
2.Serjeant GR. Sickle Cell Disease. 3 rd ed. New York: Oxford University Press; 2001. p. 3-15.  Back to cited text no. 2
3.Darbari DS, Wang Z, Kwak M, Hildesheim M, Nichols J, Allen D, et al. Severe painful vaso-occlusive crises and mortality in a contemporary adult sickle cell anemia cohort study. PLoS One 2013;8:e79923.  Back to cited text no. 3
4.Aliyu ZY, Suleiman A, Attah E, Mamman AI, Babadoko A, Nouraie M, et al. NT-proBNP as a marker of cardiopulmonary status in sickle cell anaemia in Africa. Br J Haematol 2010;150:102-7.  Back to cited text no. 4
5.Ahmed SG, Bukar AA, Jolayemi B. Hematological indices of sickle cell anaemia patients with pulmonary tuberculosis in northern Nigeria. Mediterr J Hemat Infect Dis 2010;2:e2010014.  Back to cited text no. 5
6.Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 1994;330:1639-44.  Back to cited text no. 6
7.De Castro LM, Jonassaint JC, Graham FL, Ashley-Koch A, Telen MJ. Pulmonary hypertension associated with sickle cell disease: Clinical and laboratory endpoints and disease outcomes. Am J Hematol 2008;83:19-25.  Back to cited text no. 7
8.Steinberg MH. Management of sickle cell disease. N Engl J Med 1999;340:1021-30.  Back to cited text no. 8
9.Buchowski MS, Swift LL, Akohoue SA, Shankar SM, Flakoll PJ, Abumrad N. Defects in postabsorptive plasma homeostasis of fatty acids in sickle cell disease. JPEN J Parenter Enteral Nutr 2007;31:263-8.  Back to cited text no. 9
10.Haghpanah S, Davani M, Samadi B, Ashrafi A, Karimi M. Serum lipid profiles in patients with beta-thalassemia major and intermedia in southern Iran. J Res Med Sci 2010;15:150-4.  Back to cited text no. 10
[PUBMED]  Medknow Journal  
11.Zorca S, Freeman L, Hildesheim M, Allen D, Remaley AT, Taylor JG 6th, et al. Lipid levels in sickle-cell disease associated with haemolytic severity, vascular dysfunction and pulmonary hypertension. Br J Haematol 2010;149:436-45.  Back to cited text no. 11
12.Shores J, Peterson J, VanderJagt D, Glew RH. Reduced cholesterol levels in African-American adults with sickle cell disease. J Natl Med Assoc 2003;95:813-7.  Back to cited text no. 12
13.Shalev H, Kapelushnik J, Moser A, Knobler H, Tamary H. Hypocholesterolemia in chronic anemias with increased erythropoietic activity. Am J Hematol 2007;82:199-202.  Back to cited text no. 13
14.Akinlade KS, Atere AD, Olaniyi JA, Rahamon SK, Adewale CO. Serum copeptin and cortisol do not accurately predict sickle cell anaemia vaso-occlusive crisis as C-reactive protein. PLoS One 2013;8:e77913.  Back to cited text no. 14
15.Cheesbrough M. PCV and red cell indices. In: District Laboratory Practice in Tropical Countries, Part 2. Cambridge: Cambridge University Press; 2000. p. 309-313.  Back to cited text no. 15
16.Frieldwald WT, Levy RI, Fredricson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of prepreparative ultra centrifuge. Clin Chem 1972;18:499-502.  Back to cited text no. 16
17.Westerman MP. Hypocholesterolaemia and anaemia. Br J Haematol 1975;31:87-94.  Back to cited text no. 17
18.Ngogang J, Mouray H, Lebreton de Vonne T, Raisonnier A. Erythrocyte and plasma cholesterol exchange in sickle cell anemia. Clin Chim Acta 1989;179:295-304.  Back to cited text no. 18
19.Olaniyi JA, Akinlade KS, Atere AD, Arinola OG. Plasma homocysteine, methyl-malonic acid, vitamin B12 and folate levels in adult nigerian sickle cell anaemia patients. Br J Med Med Res 2013;4:1327-34.  Back to cited text no. 19
20.Nouraie M, Lee JS, Zhang Y, Kanias T, Zhao X, Xiong Z, et al., Walk-PHASST Investigators and Patients. The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica 2013;98:464-72.  Back to cited text no. 20
21.Boizel R, Benhamou PY, Lardy B, Laporte F, Foulon T, Halimi S. Ratio of triglycerides to HDL cholesterol is an indicator of LDL particle size in patients with type 2 diabetes and normal HDL cholesterol levels. Diabetes Care 2000;23:1679-85.  Back to cited text no. 21
22.Belcher JD, Marker PH, Geiger P, Girotti AW, Steinberg MH, Hebbel RP, et al. Low density lipoprotein susceptibility to oxidation and cytotoxicity to endothelium in sickle cell anemia. J Lab Clin Med 1999;133:605-12.  Back to cited text no. 22
23.Ren H, Ghebremeskel K, Okpala I, Ugochukwu CC, Crawford M, Ibegbulam O. Abnormality of erythrocyte membrane n-3 long chain polyunsaturated fatty acids in sickle cell haemoglobin C (HbSC) disease is not as remarkable as in sickle cell anaemia (HbSS). Prostaglandins Leukot Essent Fatty Acids 2006;74:1-6.  Back to cited text no. 23
24.Sasaki J, Waterman MR, Buchanan GR, Cottam GL. Plasma and erythrocyte lipids in sickle cell anaemia. Clin Lab Haematol 1983;5:35-44.  Back to cited text no. 24


  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Role of paraoxonase 1 activity and PON1 gene polymorphisms in sickle cell disease
Joelma Figueiredo Menezes, Magda Oliveira Seixas Carvalho, Larissa Carneiro Rocha, Felipe Miranda dos Santos, Elisângela Vitória Adorno, Cyntia Cajado de Souza, Rayra Pereira Santiago, Caroline Conceição da Guarda, Rodrigo Mota de Oliveira, Camylla Vilas Boas Figueiredo, Suéllen Pinheiro Carvalho, Sètondji Cocou Modeste Alexandre Yahouédéhou, Luciana Magalhães Fiuza, Corynne Stéphanie Ahouefa Adanho, Thassila Nogueira Pitanga, Isa Menezes Lyra, Valma Maria Lopes Nascimento, Alberto Augusto Noronha-Dutra, Marilda Souza Goncalves
Scientific Reports. 2023; 13(1)
[Pubmed] | [DOI]
2 Lipid Profile, Nutritional Status and Severity Biomarkers in Adults With Sickle Cell Anemia
Ingrid Cristiane Pereira Gomes, João Pedro Costa Machado Teles, Anny Catarina Sousa Coelho, Maria Carollyne Passos Cruz, Lindemberg Costa de Albuquerque, Mariana Amaral Carvalho, Paulo Herlan Castro dos Santos, Sérgio Nolasco dos Santos, Rosana Cipolotti
Plasmatology. 2023; 17
[Pubmed] | [DOI]
3 Metabolomic profiling for dyslipidemia in pediatric patients with sickle cell disease, on behalf of the IHCC consortium
Hui-Qi Qu, Joseph Glessner, Jingchun Qu, Frank Mentch, Ian Campbell, Patrick Sleiman, John J Connolly, Hakon Hakonarson
Metabolomics. 2022; 18(12)
[Pubmed] | [DOI]
4 Plasma Lipids and Lipoproteins in Sickle Cell Disease Patients in the Northern West Bank, Palestine
Fekri Samarah,Mahmoud A. Srour,Kamal Dumaidi,Sherif Badawy
BioMed Research International. 2021; 2021: 1
[Pubmed] | [DOI]
5 The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease
Oluwabukola T. Gbotosho,Maria G. Kapetanaki,Gregory J. Kato
Frontiers in Immunology. 2021; 11
[Pubmed] | [DOI]
6 Investigation of Lipid Profile and Clinical Manifestations in SCA Children
Caroline Conceição da Guarda,Sètondji Cocou Modeste Alexandre Yahouédéhou,Rayra Pereira Santiago,Camila Felix de Lima Fernandes,Joelma Santana dos Santos Neres,Antonio Mateus de Jesus Oliveira,Milena Magalhães Aleluia,Camylla Vilas Boas Figueiredo,Cleverson Alves Fonseca,Luciana Magalhães Fiuza,Suellen Pinheiro Carvalho,Rodrigo Mota de Oliveira,Valma Maria Lopes Nascimento,Larissa Carneiro Rocha,Marilda Souza Gonçalves
Disease Markers. 2020; 2020: 1
[Pubmed] | [DOI]
7 Polymorphisms in genes that affect the variation of lipid levels in a Brazilian pediatric population with sickle cell disease: rs662799 APOA5 and rs964184 ZPR1
Thaisa Netto Souza Valente-Frossard,Nilcemar Rodrigues Carvalho Cruz,Fernanda Oliveira Pereira,Andre Rolim Belisario,Brisa Machado Pereira,Antônio Frederico de Freitas Gomides,Glaucia Aparecida Domingos Resende,Aline Menezes Carlos,Helio Moraes-Souza,Cibele Velloso-Rodrigues
Blood Cells, Molecules, and Diseases. 2020; 80: 102376
[Pubmed] | [DOI]
8 Altered HDL particle in sickle cell disease: decreased cholesterol content is associated with hemolysis, whereas decreased Apolipoprotein A1 is linked to inflammation
Ahmet Yalcinkaya,Selma Unal,Yesim Oztas
Lipids in Health and Disease. 2019; 18(1)
[Pubmed] | [DOI]
9 Scavenger Receptor Class B type 1 (SR-B1) and the modifiable risk factors of stroke
Cameron Lenahan,Lei Huang,Zachary D. Travis,John H. Zhang
Chinese Neurosurgical Journal. 2019; 5(1)
[Pubmed] | [DOI]
10 Disruption of Lipid Profile and Alteration of Hepatic Lipoprotein Metabolism Gene Expression in Anaemia-induced Rat
Olabisi O. Ogunrin,Samuel N. Olaitan,Olusegun O. Fajana,Kehinde O. Olatunj,Loveth Obodokwe,Oluwaseyi A. Ogunrin,Oluwakemi A. Rotimi,Solomon O. Rotimi
Journal of Applied Sciences. 2019; 19(6): 520
[Pubmed] | [DOI]
11 Leptin -2548 G>A gene polymorphism is associated with lipids metabolism and TGF-ß alteration in sickle cell disease
Camylla Vilas Boas Figueiredo,Magda Oliveira Seixas Carvalho,Rayra Pereira Santiago,Sânzio Silva Santana,Rodrigo Mota de Oliveira,Luciana Magalhães Fiuza,Caroline Conceição da Guarda,Milena Magalhães Aleluia,Valma Maria Lopes do Nascimento,Isa Menezes Lyra,Junia Raquel Dutra Ferreira,Marilda de Souza Goncalves
Meta Gene. 2016; 10: 27
[Pubmed] | [DOI]
12 Normal Non-HDL Cholesterol, Low Total Cholesterol, and HDL Cholesterol Levels in Sickle Cell Disease Patients in the Steady State: A Case-Control Study of Tema Metropolis
Richard K. D. Ephraim,Patrick Adu,Edem Ake,Hope Agbodzakey,Prince Adoba,Obed Cudjoe,Clement Agoni
Journal of Lipids. 2016; 2016: 1
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and me...
    Article Tables

 Article Access Statistics
    PDF Downloaded99    
    Comments [Add]    
    Cited by others 12    

Recommend this journal